
	

	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	 	 	 	 	 	

DELIVERABLE D2.2

Data synopses for
approximate analytics

	

DELIVERABLE D2.2 2

Abstract

PROJECT NUMBER: 825041
START DATE OF PROJECT: 01/01/2019
DURATION: 36 months

Horizon 2020

SmartDataLake is a Research and Innovation
action funded by the Horizon 2020 Framework
Programme of the European Union.

The information in this document reflects the
authors’ views and the European Community is not
liable for any use that may be made of the
information contained therein. The information in
this document is provided ”as is” without guarantee
or warranty of any kind, express or implied, including
but not limited to the fitness of the information for a
particular purpose. The user thereof uses the
information at his/her sole risk and liability.

Dissemination Level Public

Due Date of Deliverable Month 16 (30/04/2020)

Actual Submission Date 27/04/2020

Work Package
WP2: Adaptive Data Virtualization and Storage

Tiering

Tasks
Task 2.2: Data synopses and approximate query

processing

Type Report

Lead Beneficiary Eindhoven University of Technology

Approval Status Submitted for approval

Version 1.0

Number of Pages 41

Filename
SmartDataLake-D2.2-

Data_synopses_for_approximate_analytics.pdf

This report presents our work on approximate query analytics in SmartDataLake. In particular,
we describe a query approximation layer (QAL) for OLAP queries built over Spark that is offered
as a web service to all SmartDataLake components. We elaborate on the synopses that are
already integrated in QAL (both samples and sketches) and explain how these are maintained
and used for query answering. Our main innovation involves a novel self-tuning query engine
that: (a) decides which synopses should be constructed to maximize the query throughput, and
constructs them transparently from the user, and (b) integrates these synopses in the query plan,
and uses them to estimate the answers. Finally, we describe our current directions for improving
the construction of synopses, and the way the query plans are constructed.

	

DELIVERABLE D2.2 3

History
Version Date Reason Revised by

0.1 26 Feb 2020 First draft Hamid Shahrivari Joghan

0.2 13 Mar 2020 Second draft Hamid Shahrivari Joghan

0.3 31 Mar 2020
First version for internal

review
Hamid Shahrivari Joghan

1.0 27 Apr 2020
Final version for

submission
Hamid Shahrivari Joghan

Author List
Organization Name Contact information

TUE Odysseas Papapetrou o.papapetrou@tue.nl

TUE Hamid Shahrivari Joghan h.shahrivari.joghan@tue.nl

TUE George Fletcher g.h.l.fletcher@tue.nl

TUE Nikolay Yakovets n.yakovets@tue.nl

TUE Larissa Shimomura l.capobianco.shimomura@tue.nl

EPFL Anastasia Ailamaki anastasia.ailamaki@epfl.ch

EPFL Bikash Chandra bikash.chandra@epfl.ch

RAW-LABS Benjamin Gaidioz ben@raw-labs.com

ATHENA Dimitris Skoutas dskoutas@athenarc.gr

	 	

	

DELIVERABLE D2.2 4

Executive Summary

Approximate query processing (AQP) enables applying a trade-off between accuracy and
performance, in order to provide the user with a real-time response. State-of-the-art AQP engines
rely on constructing compact summaries of data, named synopses, and approximating the query
answers on these summaries. Examples of synopses include samples, histograms, and sketches.
This report presents our work on constructing an AQP engine for SmartDataLake (SDL), where,
due to the extreme data volume, data exploration and analytics become very slow.

In Section 1, we briefly motivate the need for AQP on SDL. We present an overview for the three
different categories of AQP, and argue that none of them fulfils the requirements for data
exploration in SDL.

In Section 2, we cover some basic concepts and related studies. Firstly, we study state-of-the-art
AQP engines and outline their strengths and weaknesses. We then discuss synopses, the power
horse of all AQP engines, and explain their functionality. We focus on both samples and sketches,
which are exploited in our work. Next, we provide an overview of the Apache Spark platform,
emphasizing on SparkSQL and the Catalyst optimizer.

The SmartDataLake AQP solution, called Query Approximation Layer (QAL), is introduced in
Section 3. QAL is an adaptive approximate query processing engine inside SDL-Virt. Implemented
on top of SparkSQL and Catalyst, QAL scales out on hundreds of machines. First, we present the
big picture of QAL and how each component interacts with others. The main innovation behind
QAL compared to other state-of-the-art AQP engines is its self-tuning nature: QAL automatically
adapts to user behaviour by constructing and maintaining reusable synopses. To enable this
adaptivity, the planner generates multiple approximate physical plans in which synopses are
injected as physical operators, and then it executes the one that maximizes the expected
throughput for future queries, as opposed to maximizing the performance of a single query, which
is the approach of the state-of-the-art AQP engines. Leveraging a variety of synopses, the planner
considers various approximate execution plans for each query. To preserve the accuracy of plans,
it obtains rules for integrating synopses into the plans. We also discuss the two approaches of QAL
for forecasting future queries, which is a critical part of estimating the expected throughput: (a) a
window-based query prediction and (b) a novel ML model predicting approximate operators.

In Section 4, we focus on the SDL ecosystem, explaining how other components of SDL can
connect to QAL through a web service interface. This setup enables each layer of SDL to rapidly
import its data into QAL and submit approximate data analytics queries. The bridge opening the
QAL functionality to the other SDL components is a REST API web service.

In Section 5, we present our preliminary experiments and results that demonstrate the efficiency
of the proposed QAL.

	

DELIVERABLE D2.2 5

Abbreviations and Acronyms

API Application Programming Interface

QAL SmartDataLake’s Query Approximation Layer

AQP Approximate Query Processing

BF Bloom Filter

CMS Count-min Sketch

CLT Central Limit Theorem

CPU Central Processing Unit

CSV Comma-Separated Values

ELP Error-Latency Profile

FM Flajolet-Martin Sketch

HDFS Hadoop Distributed File System

HIN Heterogeneous Information Network

JSON JavaScript Object Notation

ML Machine Learning

MPP Massively Parallel Processing

LSTM Long Short-term Memory

OLA Online Aggregation

OLAP Online Analytical Processing

QCS Query Column Set

RAM Random-access Memory

RDD Resilient Distributed Dataset

SDL Smart Data Lake

SQL Structured Query Language

URL Uniform Resource Locator

	

	 	

	

DELIVERABLE D2.2 6

Table of Contents

1. Introduction .. 8	

1.1. Approximate query processing for big data analytics ... 8	

1.2. Approximate query processing in SDL 10	

1.3. The silver bullet: adaptive approximate query processing
 .. 12	

2. Prerequisites and Related Work 12	

2.1. State of the art in approximate query processing 13	
2.1.1. BlinkDB ... 13	
2.1.2. Quickr ... 14	
2.1.3. iOLAP .. 14	

2.2. Samples ... 15	
2.3. Sketches ... 16	

2.3.1. Count-min sketch ... 16	
2.3.2. Bloom filter .. 18	
2.3.3. Other synopses ... 19	

2.4. Massively parallel processing platforms 19	
2.4.1. Apache Spark ... 20	
2.4.2. SparkSQL ... 20	
2.4.3. Catalyst optimizer .. 21	

3. SDL Query Approximation Layer 22	

3.1. Approximate query planning .. 24	

3.1.1. Approximate physical operators 24	
3.1.2. Generating candidate physical plans 25	
3.1.3. Accuracy guarantees ... 26	

3.2. Adaptivity to query workload 26	

	

DELIVERABLE D2.2 7

3.2.1. Cost-based planner .. 27	
3.2.2. Synopsis warehouse .. 29	
3.2.3. Synopsis buffer .. 30	
3.2.4. Metadata store ... 30	
3.2.5. Matching approximate query operators to synopses 31	

3.3. Predicting the future queries .. 32	
3.3.1. Window-based query prediction 32	
3.3.2. Predicting approximate operators 32	
3.3.3. Approximate operator vectorization 33	
3.3.4. Predictive model ... 34	

4. Integration with other SDL components and
deployment ... 34	

5. Experimental results ... 35	

6. Conclusion .. 39	
	
	

	

DELIVERABLE D2.2 8

1. Introduction

SmartDataLake focuses on extreme-scale analytics over data lakes. The two main technical
challenges for data management involve: (a) addressing data heterogeneity, which is inherent in
data lakes (Task 2.1), and (b) addressing the ever-increasing data volume (Tasks 2.1 and 2.2).

Task 2.2 focuses on using query approximation strategies to increase querying performance, with
a small, controllable loss of accuracy. The key motivation behind query approximation is that a
slight relaxation in terms of accuracy can lead to tremendous improvements in scalability and
response times. SmartDataLake leverages this idea by integrating a fully-fledged AQP engine over
the data virtualization layer. The engine integrates various types of data synopses.

This document describes our progress with respect to SDL’s AQP engine. We start with a high-
level overview of approximate query processing (AQP) for big data. Then, we focus on the role of
AQP in SmartDataLake, i.e., which project components can utilize AQP and what type of AQP is
desired in the project. Section 2 describes the preliminaries and related work. Our scientific
contribution, which comprises a self-tuning Query Approximation Layer (QAL), is presented in
Section 3. Section 4 focuses on the technical aspects of integrating QAL with the other
SmartDataLake components. We conclude with highlights of our experimental results (Section 5),
and conclusions (Section 6).

1.1. Approximate query processing for big data
analytics

Online analytical processing (OLAP) is today offered by all commercial database systems. Users
can exploit OLAP either through direct SQL queries (cubes, slicing and dicing, etc.) or through
third-party software that uses a data management system for accessing the data. It is a core
functionality for data-driven decision making, e.g., in the context of a decision support system or
a data analytics environment, and it is tightly integrated with data visualization platforms.

As such, performance and scalability of OLAP engines is imperative for facilitating near-real-time
decisions. However, it is rather costly to support OLAP on big data. Even the state-of-the-art
methods that compute exact answers cannot meet the high performance requirements for
interactive analytics over big data. To alleviate this problem, approximate query processing (AQP)
offers a way to trade accuracy with performance. AQP is particularly suited for aggregate queries,
such as counts, sums, and averages. Existing AQP techniques can be broadly classified into three
categories: (a) online AQP, (b) offline AQP, and, (c) online aggregation systems. Most of the state-
of-the-art techniques rely on synopses, i.e., data structures that can compactly summarize the
data and support estimation of aggregate queries. Examples of synopses include samples,
histograms, and sketches.

Online AQP systems construct the synopses during the query execution stage, thereby optimizing
them for the query at hand. The lifetime of these synopses is therefore typically limited to a single
query. Instead, offline AQP rely on a priori knowledge (e.g., knowledge of the expected query
workload), and use this to decide which synopses would be the most beneficial for increasing the
overall query throughput. In this case, the synopses are constructed at a preparation phase, and
are exploited for supporting more than one queries. Finally, online aggregation, which is mostly
used for stream processing, provides continuous and real-time estimates of the query while

	

DELIVERABLE D2.2 9

observing more data. In the remainder of this section, we elaborate on the main representatives
of these three categories, and discuss their advantages and disadvantages.

Offline AQP: Offline AQP engines start by analysing the expected workload to identify the optimal
set of synopses that should be generated to provide fast responses, subject to a predefined storage
budget and error tolerance specification.

There are several algorithms and fully-fledged systems for offline AQP. Congressional sampling
[1], STRAT [2] and BlinkDB [3] provide algorithms to compute the best set of samples, subject to a
storage budget. In the same line, other works maintain additional data structures to better support
skewed datasets and to reduce the size of samples [4][5][6]. AQUA [7] and VerdictDB [8] instead
act as a middleware between users and traditional database systems by rewriting user queries to
take advantage of precomputed samples. Similarly, Sample+Seek [9] introduces measure-biased
sampling, which takes advantage of indexes to create more efficient samples and provide error
guarantees for GROUP BY queries with many groups. AQP++ [10] blends AQP with aggregate
precomputation, such as data cubes, to handle aggregate relational queries. Furthermore, the
most recent offline AQP engines [2][8][11] are constructed over massively parallel processing
platforms, e.g., Spark, combining horizontal scalability with fast estimates.

By enabling the query engine to drastically reduce I/O, offline AQP engines typically offer massive
performance improvements for the queries that can be answered with the prepared synopses.
However, the choice of which synopses should be constructed is not always easy, since it requires
some kind of ‘prediction’ of which synopses will be useful for the future queries. Offline AQP
engines build on the premise that the query workload is predictable, which makes them unsuitable
for unpredictable and dynamically changing workloads. Data exploration is one such example,
where future queries are determined based on the results obtained from past queries.

Online AQP: Online AQP engines address the challenge of the dynamic workload by introducing
approximation at the time of query execution. The optimization goal of these query engines is to
construct the optimal synopses for speeding-up the query at hand. State-of-the-art online AQP
engines achieve this goal by introducing samplers within the query plan, in order to reduce the
tuples that need to be considered [12][13]. However, unlike offline AQP, the samplers are
introduced at the runtime and injected in the execution plan, after scanning the raw data and
before intermediate operations. As a result, samplers improve the computational performance of
the operators at higher levels of the query plan, e.g., expensive joins, but do not avoid going
through the base relations for each input query.

Even though online AQP can, in principle, be applied to all queries and does not require a priori
knowledge about the query workload, it brings substantially less performance boost compared to
offline AQP, since it still requires at least one full access over the raw data, in order to generate the
synopses. Query-time sampling is by definition limited in the scope of a single query, as the
generated samples are not constructed with the purpose of reuse across queries. Instead, they are
specific to the query at hand, and they are typically discarded after the query has been answered.
A notable exception is the recent work of Galakatos et al. [13], which rewrites the incoming query
so that it can reuse previously created samples; however, ignoring the nature of the workload, it
does not adapt the query plans to future queries.

Online aggregation: Online aggregation was first introduced in the seminal work of Hellerstein et
al. [14] and offers a fundamentally different way of approximating: instead of sampling over the
data, it estimates the answer by looking at progressively increasing portions of the data, until a
user determines that the answer is sufficiently accurate. Online aggregation techniques rely on
the assumption that data is observed at a random order, in order to estimate the accuracy bounds
of the answers. Recent query engines that support online aggregation [15][16][17] mainly differ on
the way they produce the accuracy bounds. For example, ABS [16] uses bootstrapping to produce

	

DELIVERABLE D2.2 10

multiple estimators from the same sample, whereas iOLAP [17] models online aggregation as
incremental view maintenance with uncertainty propagation.

1.2. Approximate query processing in SDL
Before delving into the details of the query approximation layer (QAL), we briefly discuss how
query approximations can be used to boost performance of each of the three main components
of SmartDataLake: SDL-Virt, SDL-HIN and SDL-Vis (Figure 1). Furthermore, we summarize the
challenges these requirements bring for the approximation layer.

AQP in SDL-Virt: SDL-Virt offers efficient data analytics over big heterogeneous data. The data
analyst can execute SQL and SQL-like queries over different data formats and data sources that
are possibly distributed across different systems and networks. However, big data analytics
typically do not require answers that are accurate until the last decimal; in most cases, insights can
be extracted even with approximate results, as long as the user can control the accuracy
guarantees. The QAL is constructed within SDL-Virt, adding to the functionality of the query
engine developed in Task 2.1 by offering the capability of approximate queries. It can be accessed
by other components through a simple REST API. Furthermore, to enable transparent
interoperability with other components that are already prepared to use SQL interfaces, it supports
SQL queries, with a small extension for declaring the user’s desired accuracy guarantees.

AQP in SDL-HIN: SDL brings forth novel and scalable methods and algorithms to explore and
mine data lake’s content with the help of analytics and mining over a dynamic HIN. SDL-HIN
component can use the QAL to access data stored in a relational format. Typical queries (in natural
language) that can be used for enriching and exploring the HIN are, for example:

• find the number of connections between two nodes, in order to determine the weight of
the nodes

• find the number of nodes in the HIN satisfying a particular property

• find the number of edges between two selected HIN subgraphs

AQP in SDL-Vis: Data scientists rely on the guidance of interactive data visualization engines, in
order to analyze big data efficiently and effectively. Clearly, response time is critical to maintain
the user connected to the analysis task: users get distracted easily and lose focus when the answer
delays for more than a few seconds. Accordingly, most visualization engines strive to provide
results within a few seconds, or explicitly handle the latency in a way that does not negatively
affect user’s cognition[18][19]. However, as the data size grows, systems providing exact results
simply fail to respond with a reasonable latency. Several recent studies improve this latency by
exploiting AQP [20]–[23], yet on more controlled configurations, i.e., not in a data lake, and not in
a self-tuning nature.

Our approach in SDL is to use the query approximation layer to provide near-interactive answers
to the user. SDL-Vis can execute SQL-like queries and receive approximate results in a few
seconds, if suitable synopses are already constructed. Furthermore, QAL continuously adapts to
the arriving queries by constructing new synopses on previously unexplored data, thereby
optimizing the future queries.

Novel challenges for the Query Approximation Layer: The highly dynamic and distributed nature
of SmartDataLake leads to unique challenges related to Approximate Query Processing, some of
which we already addressed in the first part of the project:

	

DELIVERABLE D2.2 11

a) Automating synopses creation process, i.e. choosing which synopses should be constructed
to speed-up future analytics. Such a self-tuning nature is critical for a multi-user system, and
particularly for enabling data exploration, where the query types and the data ranges of interest
can change significantly within a data exploration task.

b) Offering a layered synopses storage, i.e., distinguishing between different storage
devices/locations, and deciding which synopses to store on each layer. Current AQP engines
rely on the assumption that synopses are sufficiently small to fit on either RAM or the local
hard disk, which however no longer holds in the era of data deluge. On the other hand,
advances in hardware, software, and networking bring different data storage layers, each with
different properties (e.g., RAM, local hard disk of each node, distributed storages). Following
recent results [24], QAL will carefully utilize these storage layers to bring a substantial
performance boost.

c) Combining multiple synopses to answer complex analytics tasks. Existing AQP engines are
restricted to the use of a single synopsis (or single type of synopses) per query plan. By enabling
the combination of multiple synopses and synopsis types in the same query plan (potentially
even to approximate the same operator) QAL can produce more efficient query plans and can
better reuse synopses.

d) Identifying the changing part of the data and reflecting the changes to synopses. Even though
most synopses are focused on summarizing data streams, they assume an append-only model:
the new data is added on the old data. Since QAL will be reading the data from disk, it needs
to be able to identify the data updates and reconstruct the synopses only for the updated data
segments.

Figure 1: The three layers of SDL: SDL-Virt, SDL-HIN, and SDL-Vis.

Raw files DatabasesGraph data
Data Lake

Virtualized Data Access

Approximate Query Processing

Storage Tiering

Distribution & Elasticity

Similarity Search

Entity Resolution

Link Prediction

Community Detection

Entity Ranking Change Detection

Visual Analytics Model

Feature Exploration

Spatial Visualizations

Temporal Visualizations

Parameter Tuning Graph Visualizations

SDL-Vis

SDL-HINSDL-Virt

User

	

DELIVERABLE D2.2 12

1.3. The silver bullet: adaptive approximate
query processing

The SDL Query Approximation Layer (QAL) is an elastic, adaptive AQP engine that synergistically
combines the benefits of online and offline AQP. QAL performs online approximation by injecting
synopses (samples and sketches) into the query plan, while at the same time it strategically
materializes and reuses synopses across queries, and continuously adapts them to changes in the
workload and to the available storage resources. QAL is implemented over Apache SparkSQL and
extends Catalyst query optimizer and SparkSQL query engine with the aforementioned
functionality.

To illustrate the utility of QAL, let us consider an example use case. Visual analytics is a core
process in data exploration, facilitating extraction of useful insights out of big data. A data scientist
typically starts by running simple exploratory queries over the data and visualizing the results,
formulating and validating hypotheses. Queries are not known a priori, since each query typically
depends on the results of the previous queries. For example, the results of one query may hint the
user to zoom in, or to analyze further a region of the data as the next query. In this case, offline
AQP engines cannot be used, since they require a priori knowledge of the query load in order to
prepare the synopses. On the other hand, online AQP engines offer a substantial performance
improvement compared to not using approximation at all; however, online AQP engines do not
support reusability of approximations across queries (e.g., if two queries have an overlapping sub-
plan).

The ideal situation is to start building the synopses as byproducts of the queries and save these
synopses such that they can be reused in future queries. A synopsis can be built on a base relation
(a table), or even on intermediary result, e.g., the results of a join, or even the results of a filter.
Clearly, creating and saving a synopsis incurs a cost, so the decision of constructing synopses
bounded to space quota is taken by the query engine, considering the utility of each synopsis and
the frequency of use at the future queries. Furthermore, the storage budget for synopses can be
increased or reduced in order to anticipate an increase in data, query load (number of users), and
available hardware.

2. Prerequisites and Related Work

This section covers some basic concepts related to QAL and summarizes the current state of the
art. We start with a discussion of related work, in Section 2.1, going over state-of-the-art
approximate query processing engines and outlining their strengths and weaknesses. We then
continue with the prerequisites. Specifically, in Sections 2.2 and 2.3 we discuss synopses (samples
and sketches, respectively), focusing on the ones that are already integrated (or planned to be
integrated) in QAL, and explain their functionality. In Section 2.4 we provide an overview of the
Apache Spark platform, which is the platform of choice for scaling out QAL. In this context, we
discuss SparkSQL and the Catalyst optimizer, both of which we extend for QAL.

	

DELIVERABLE D2.2 13

2.1. State of the art in approximate query
processing

We now look at three representative AQP engines: (a) BlinkDB (offline AQP), (b) Quickr (online
AQP), and (c) iOLAP (online aggregation). We explain the key decisions of each engine and how
these influence its scalability and performance.

2.1.1. BlinkDB
BlinkDB [3] is a distributed sampling-based approximate query processing engine that supports
SQL-based aggregation queries over stored data. It enables users to fine-tune the trade-off
between performance (the query response time) and accuracy constraints (the error bound of the
approximate result). BlinkDB relies on Apache Spark for distributed execution of the query, and on
Hadoop HDFS for robust and scalable data storage.

 As a result, queries over multiple terabytes of data can be answered in seconds, accompanied by
meaningful error bounds relative to the answer that would be obtained if the query ran on the
whole data. Compared to other offline AQP, BlinkDB supports more general queries as it makes
no assumptions about the attribute values in the WHERE, GROUP BY, and HAVING clauses, or the
distribution of the values used by aggregation functions. The key observation is that BlinkDB only
assumes that query column sets (QCS) used by queries in WHERE, GROUP BY, and HAVING
clauses, are stable over time.

Fundamentally, BlinkDB comprises two main modules:

1. Sample creation: a stratified sampling strategy that builds and maintains a variety of
samples.

2. Sample selection: a run-time sample selection strategy that leverages parts of a sample to
estimate query selectivity and chooses the best samples for satisfying query constraints.

The sample creation module creates stratified samples on the most frequently used QCSs so that
BlinkDB can answer queries about any subgroup, regardless of its representation in the underlying
data. The frequent QCSs are identified by abstracting workload information so that it can get a
meaningful estimation of the workload distribution. However, since BlinkDB generates offline
samples based on the assumption that the workload is stable over time, it does not perform well
for queries whose QCS is not covered by the prebuilt samples. If the distribution of QCSs remains
stable over time, BlinkDB creates samples that are neither over- nor under-specialized for the
query workload. Additionally, allocating the available space to the constructed samples is
formulated as an optimization problem that minimizes the loss of accuracy from samples for the
overall workload distribution. Based on the collection of past QCS and their historical frequencies,
it chooses a collection of stratified samples limited to user-configurable space quota. These
samples are chosen to efficiently answer queries with the same QCSs as past queries and to
provide good coverage for future queries over similar QCS.

The second module, the sample selection, selects samples to answer the arriving queries. By
executing the query on multiple smaller sub-samples, BlinkDB quickly chooses the best set of
samples to satisfy specified response time and error bounds. It leverages Error-Latency Profile
(ELP) heuristic, the accuracy and latency of a query executed on pre-computed samples, to
efficiently choose the sample that will best satisfy the user-specified error or time bounds. BlinkDB
has proposed an efficient mechanism to consult the ELPs to find an appropriate sample when a
new query arrives with an accuracy and performance target. It also tries to share samples among

	

DELIVERABLE D2.2 14

different QCSs. For example, a sample for columns (Age, Salary) can also cover the queries for
column (Salary).

In a nutshell, BlinkDB offers a distributed approximate query processing engine that constructs
samples based on user hints, e.g. the past query workload. In practice, since it relies on pre-
computed samples, it enables fast and error-bounded query answers, as long as the arriving
queries are of the same type as the past query workload. However, this engine becomes inefficient
as the nature of input queries dynamically changes, which is very common in data exploration
tasks.

2.1.2. Quickr
Quickr [12] is an online AQP engine that offers a new way to lazily approximate complex SQL
queries, without a priori knowledge. The main idea in Quickr is to modify the sampling process
such that the samples are pushed down in the execution plan as deep as possible below joins and
filters. Consequently, it decreases the number of records sent to upper levels of the execution
plan. For example, a pair join requires two passes over data and one shuffle across the network. If
data were sampled in the first pass, all subsequent computations could be sped up. At a high level,
Quickr strives to achieve the following goals:

1. Given an SQL query, automatically decide whether it can be answered using samples, and
output an appropriate query plan with samplers.

2. Support complex queries.

3. Ensure that answers will be accurate and that all groups will be included (i.e., if a group by
clause is present).

Quickr utilizes three types of samples: the standard uniform sampler, the distinct sampler that
guarantees no groups will be missed, and a new sampler called the universe sampler. The universe
sampler is particularly important for joins, as it enables Quickr to sample both join relations in
parallel, such that joins performed with these samples yield an approximate result with negligible
degradation in accuracy. The universe sampler supports equi-joins, as long as the group-by
columns and the value of the aggregates are uncorrelated with the join keys. All samplers operate
in a single pass over the data, with bounded memory, and can be run in parallel. Furthermore,
Quickr guarantees that query plans with samplers do not miss groups and the estimated
aggregates are within a small ratio of their true value.

Quickr introduces an algorithm for deciding which samplers to construct, and where to inject the
sampler in the query plan. Quickr starts by placing a sampler below every aggregation (which are
typically at high positions in the query plan). Next, by pushing samplers closer to the raw data and
before other database operators such as joins, selects, and projects, it generates multiple
approximate plans. In the end, Quickr picks the best performing plan among all generated plans
and sends it for execution.

Without any a priori knowledge of the past workload or user's hints, Quickr provides approximate
answers based on real-time constructed samples. However, Quickr fails to store and reuse the
samples across queries, thereby suffering from high I/O for creating the optimal samples from
scratch at each query.

2.1.3. iOLAP
iOLAP [17] is an incremental OLAP query engine that provides a smooth trade-off between query
accuracy and latency. iOLAP covers a full range of user requirements, from approximate but timely

	

DELIVERABLE D2.2 15

query execution to exact query execution. iOLAP offers interactive incremental query processing
built on a novel mini-batch execution model. In the beginning, iOLAP randomly partitions the
input dataset into smaller sets called mini-batches. Then, the system presents the user an
approximate result with an associated error estimate as soon as it has processed the input query
on a mini-batch. Concurrently, the system keeps reading larger and larger numbers of mini-batch,
refining the approximate query results and updating the user. This process continues until either
the user is satisfied with the accuracy of the query results and stops the query, or the system has
processed all the data.

Given an OLAP query, iOLAP automatically rewrites the query into an enhanced delta query and
executes the delta query on each mini-batch of data. However, instead of executing the query on
all mini-batches, iOLAP applies a delta query on each new batch and updates the previous results.
The key idea behind iOLAP is a new delta update algorithm that tracks uncertainties in the partial
results of operators in a query. The uncertainty is categorized to two levels: tuple uncertainty and
attribute uncertainty. At each batch, all the uncertain values from the previous batch need to be
recomputed and brought up-to-date with the new data. Based on this, iOLAP focuses on
minimizing the recomputation on uncertainties that would change. Lastly, iOLAP delta update
algorithm relies on an efficient bootstrap-based error estimation, which can be applied to arbitrary
user-defined aggregates.

Functionality of the iOLAP delta update algorithm is limited to positive relational algebra queries,
i.e., any query that can be composed using relational operators SELECT, PROJECT, JOIN, UNION,
and AGGREGATE. However, it does not consider queries that have approximate join/group-by
keys under sampling.

2.2. Samples
Execution of OLAP queries over very big relations is destined to take too much time, simply due
to the necessary iteration over all records for computing the aggregates. To speed-up these
queries, most AQP engines rely on samples. Precisely, small samples are taken over all tables
participating in a query plan, either in a preparatory –offline– phase, or when the query arrives.
Then, the query plan is executed over the samples which are much smaller than the full data.
Therefore, the query execution cost is drastically reduced.

The literature includes several generic sampling algorithms, each coming with its own properties
and ways to provide accuracy guarantees. In the following, we go over the two most frequently
used sampling algorithms: (a) uniform sampler, (b) distinct sampler.

Uniform sampler (without replacement): The uniform sampler selects rows (without
replacement), letting a row pass through with probability p at random. This sampler is both
pipeline-able and partition-able, and its memory footprint during construction is approximately
equal to the memory footprint of the desired sample size. Even though the uniform sampler has
low execution overhead, it does not have good statistical properties in more complex workloads
(e.g. join queries) since it may miss an arbitrarily large number of join keys.

Distinct sampler: Distinct sampler guarantees that at least a certain number of rows pass per
distinct combination of values of a column set. Distinct sampler works as follows: given a set of
stratification attributes A, a number δ, and probability p, the distinct sampler passes at least δ rows
for every distinct combination of values of the columns in A. Subsequent rows with the same value
are let through with probability p. The weight of each row is set correspondingly: If the row passes
because of the frequency check, its weight is set to 1, whereas if it passes due to the probability
check, its weight is set to 1/p.

	

DELIVERABLE D2.2 16

2.3. Sketches
Sketches are small-size summaries of data designed for massive, rapid-rate data streams
processed either in a centralized or distributed environment. Due to their attractive space and
computational complexity, in the last decade, sketches have found their way to AQP, and they
evolved as the premier approximation technique for aggregate queries. Each sketch is optimized
to support a family of queries. Sketches are parameterized with one or more parameters, which
determine the accuracy of the sketch – and in effect, also its size. To execute a query on a sketch,
we perform a query-specific procedure on the sketch in order to obtain an approximate answer.

In the following, we describe the basic sketching techniques: Count-min sketches and Bloom
filters. Count-min sketches are already integrated in the QAL, whereas Bloom filters will be
integrated in the second part of the project. We also briefly summarize other synopses that we are
considering for integration in SmartDataLake’s query approximation layer.

2.3.1. Count-min sketch
Count-Min sketches are a widely applied sketching technique for data streams. A Count-Min
sketch is composed of a set of d hash functions, h1(·), h2(·), . . ., hd(·), and a 2-dimensional array of
counters of width w and depth d. Hash function hj corresponds to row j of the array, mapping
stream items to the range of [1...w].

Let CM[i, j] denote the counter at position (i, j) in the array. To add an item z of value vz in the
Count-Min sketch, we increase the counters located at CM [j, hj(z)] by vz , for j ∈ [1 … d] (see Figure
2). Similarly, to remove an item from the sketch, we hash the item and decrease the corresponding
counters for the item. A point query for an item q is answered by hashing the item in each of the
d rows and getting the minimum value of the corresponding cells, i.e.,

min
!"#:%

𝐶𝑀[𝑗, ℎ!(𝑞)]

Figure 2: Adding item z to a Count-min sketch.

Note that hash collisions may cause estimation inaccuracies – only overestimations. By setting d
= ⌈ln(1/δ)⌉ and w = ⌈e/ε⌉, where e is the base of the natural logarithm, the structure enables point
queries to be answered with an error of less than ε||a||1, with a probability of at least 1 − δ, where
‖a‖1 denotes the number of items seen in the stream.

	

DELIVERABLE D2.2 17

The Count-min sketch can be used to estimate heavy hitters and to identify the most frequent
items. More formally, we define the set of heavy hitters as those items whose frequency exceeds
a fraction φ (0 < φ < 1) of the stream length. To keep track of heavy hitters, the frequent item is
stored in a data structure separate to the sketch, such as a heap or list sorted by the estimated
frequency [23]. When the frequency of an item increases, at the same time the sketch can be
queried to obtain the current estimated frequency. If the item exceeds the current threshold for
being a heavy hitter, it can be added to the data structure. At any time, the currently set of
(approximate) heavy hitters can be found by probing this data structure.

Another functionality of Count-min sketches is for estimating the size of the join. Precisely,
consider two tables A and B, which need to be joined on attributes x and y respectively. We can
estimate the size of the join as follows: (a) create a count-min sketch for A summarizing the
distribution of x, (b) create a count-min sketch for B summarizing the distribution of y, (c)
computing the inner product of each row of the first sketch with the corresponding row of the
second sketch, and (d) returning the minimum value as an estimate. Due to the compactness of
the sketches, this approach is both space- and computationally-efficient.

Count-min sketches also support range queries. To answer range queries with an acceptable error,
the sketch is combined with dyadic ranges. An interval is a dyadic range if its length is a power-of-
two length, and its start index is 1 (mod l). Any arbitrary range can be canonically partitioned into
dyadic ranges with a simple procedure: greedily find the longest possible dyadic range from the
start of the range and repeat on what remains. So for example, the range [18...38] can be broken
into the dyadic ranges [18...18], [19...20], [21...24],[25...32],[33...36],[37...38]. Therefore, a range query
(length m) can be broken up into O(log(m)) pieces, and each of these can be posed to an
appropriate sketch over the hierarchy of dyadic ranges.

To combine Count-min sketches with dyadic ranges, we maintain a hierarchical structure
comprising log(n) sketches (see Figure 3). The first level covers the total range of input elements1.
For any subsequent level l, we divide each of the intervals of level l-1 to 2 intervals, and use the
sketch to summarize the distribution of the intervals. As an example, consider that the input data
is non-negative integers. Therefore, the sketch at level 1 keeps the count of all integers from the
range [0, 232-1]. At level 2, the sketch keeps the count of all integers from two separate intervals,
i.e., [0, 231-1] and [231, 232-1], and so on. Continuing this process, the sketch at level 32 summarizes
the frequency of each individual integer. Then, at each level, the upper Intervals are divided by
half, and the frequency of element in each interval is stored in a Count-min sketch. For each level,
we maintain a separate CMS. When a new element arrives, we update the sketches at each level
by increasing the frequency of the interval that covers the element. Range queries are then
executed as follows: (a) we break the range into dyadic intervals as discussed above, and (b) we
get an estimate for each dyadic interval and sum our estimates. Inserting and removing an item
requires an update of log(n).

Count-min sketches combined with dyadic ranges are also used to estimate quantiles, which are
important in data analytics. A quantile divides a frequency distribution to equal groups, each
containing the same fraction of the total population. For example, the median is the 2-quantile,
dividing the frequency distribution to two groups of equal size. The k-quantile problem can be
formulated as a sequence of range queries for finding the range that covers the 1/k fraction of the
distribution. By executing a binary search on dyadic ranges, we can identify the corresponding
quantile points.

	
1 In practice, the first i levels (where i ~ 10, depending on the available RAM) are not stored as sketches but as small, one-dimensional

arrays of size 2 i -1. Furthermore, additional optimizations are possible to reduce the approximation error.

	

DELIVERABLE D2.2 18

	

	
Notice that the above techniques are all limited to one-dimensional data. However, SDL also
contains high-dimensional data, e.g., spatial data which are two-dimensional, or spatiotemporal
data which cover three dimensions. A natural way to execute range queries on two or more
dimensions with count-min sketches is to decompose the d dimensions to d-dimensional dyadic
ranges, i.e., to dyadic d-orthotopes. However, this suffers from the curse of dimensionality, quickly
becoming a non-viable solution. A common approach is to form groups of dimensions and sketch
the pairwise distributions of these groups [25].

Even though Count-min sketches were originally proposed for data streams, their compact
nature, probabilistic guarantees, and performance, makes them very appealing also for
summarizing stored data. To the best of our knowledge, QAL is the first AQP engine that integrates
Count-min sketches for query execution over stored data, and handles them as first-class citizens
in terms of query planning.

2.3.2. Bloom filter
Bloom Filters [26] are popular synopses for testing set membership in an efficient way. A Bloom
filter consists of an array of m bits and a set of k independent hash functions F = {f1, f2 . . . fk}, which
hash elements of a universe U to an integer in the range of [1, m]. The m bits are initially set to 0 in
an empty Bloom filter. An element e is inserted into the Bloom filter by setting all positions fi(e) of
the bit array to 1 (see Figure 4). For any given element e ∈ U, we conclude that e is not present in
the original set if at least one of the positions computed by the hash functions of the Bloom filter
points to a bit still set to 0. However, Bloom filters allow false positives; due to hash collisions, it is
possible that all bits representing a certain element have been set to 1 by the insertion of other
elements. Given that r elements are hashed in the filter, the probability that a membership test

yields a false positive is 𝑝 ≈ 31 − 𝑒&'(/*7'. The false positive probability is minimized by setting the

number of hash functions to 𝑘 ≈ *
(
ln	(2).

Removing items from a Bloom filter is not possible: simply rehashing the item and setting the
corresponding bits to 0 can accidentally introduce false negatives, since other items that are
already added to the Bloom filter might have hashed in the same bits. An approach for handling
deletions is by replacing bits with small counts which can be increased and reduced
accordingly[26].

Figure 3: Hierarchical count-min sketch.

	

DELIVERABLE D2.2 19

2.3.3. Other synopses
The problem of estimating the cardinality of distinct items that appeared in a sequence have been
heavily studied in the last two decades. The Flajolet-Martin sketch (FM) is probably the earliest and
best-known method to approximate the distinct count in a small space [25]. Given a stream of N
integers, the FM algorithm answers how many distinct integers have appeared in the stream.

In addition to samples and sketches, there are a few other data structures that focus on data
summarization. Histogram summarizes the distribution of an attribute in a dataset by dividing the
attribute range into multiple non-overlapping buckets, and counting the occurrences in each
bucket [26]. Wavelet is another type of synopses that is conceptually close to histograms. Wavelet
transform the data with an aim to compress the most expressive features in a wavelet domain,
whereas histograms simply produces buckets on the original –non-transformed– data. Several
variants of wavelets have been studied in recent years, e.g., see [25].

2.4. Massively parallel processing platforms
Due to the mere size of data expected in SmartDataLake, we require scaling out of both the
storage and processing. Therefore, we emigrate from a centralized system to a distributed
environment of individual machines connected over a high-bandwidth, low-latency LAN. This
naturally brings the need of a programming model that supports distributed processing over this
distributed data. To attain this goal, the QAL is implemented over one of the state-of-the-art
Massively Parallel Processing (MPP) platforms, Apache Spark, by extending with approximation
techniques both SparkSQL (Spark’s query execution engine) and Catalyst query optimizer. In the
remainder of this section, we briefly describe Apache Spark and its programming model, and then
focus on SparkSQL and Catalyst.

Figure 4: Adding item e to Bloom Filter.

	

DELIVERABLE D2.2 20

2.4.1. Apache Spark
Apache Spark™ is an open-source unified analytics engine for large-scale data processing [27]. It
is a fast and general-purpose cluster computing system that offers high-level APIs in Java, Scala,
Python and R for distributed programming. In practice, it provides an interface for programming
entire clusters with implicit data parallelism and fault tolerance. Spark facilitates the rapid
implementation of analytic applications by offering pre-built machine learning algorithms, graph
analysis techniques, interactive SQL query processing, and real-time streaming analytics. Unlike
Hadoop MapReduce that relies heavily on disk storage, Spark mainly works in memory, making it
much faster at processing data.

The core data structure for storing data in Spark is called Resilient Distributed Dataset (RDD) [28].
RDDs are read-only multisets of data items distributed over a cluster of machines, that is
maintained in a fault-tolerant way with user-configurable replication level. Spark and its RDDs
were designed to allow the programmer to develop applications as a sequence of MapReduce
tasks over a cluster of machines. Simply, MapReduce programs read input data as RDD, map a
function on each record of RDD, and then reduce the results e.g., by aggregating. Spark's RDD is
the primary data abstraction: an immutable collection of data sets or partitioned records
distributed across cluster. Additionally, RDDs can contain any type of Java or Scala objects. As later
versions of RDD API, the Dataframe API was released as an abstraction on top of the RDD, followed
by the Dataset API.

Spark Core, the foundation of the project, provides distributed task dispatching, scheduling, and
basic I/O functionalities, exposed through an application programming interface. This interface
provides a functional model of programming: a "driver" program invokes parallel operations such
as map, filter or reduces on an RDD by passing a function to Spark, which then schedules the
function's execution in parallel on "executors" [29]. Executors are worker nodes' processes in
charge of running individual tasks. They are launched at the beginning of a Spark application and
typically run for the entire lifetime of an application. Once they have run the task, they send the
results to the driver. All these operations, and additional ones such as joins, take RDDs as input
and produce new RDDs. RDDs are immutable and their operations are lazy; fault-tolerance is
achieved by keeping track of the lineage of each RDD so that it can be reconstructed in the case
of data loss.

Apache Spark strength could be summarized as follows:

1. Performance: By exploiting in-memory computing and other optimizations. Additionally,
Spark is also fast when data is stored on disk.

2. Ease of use: Spark has easy-to-use APIs for operating on large datasets. This includes a
collection of operators for transforming data and familiar data frame APIs for manipulating
semi-structured data.

3. A unified Engine: Spark continuously releases high-level libraries, including support for
SQL queries, streaming data, machine learning and graph processing.

2.4.2. SparkSQL
SparkSQL brings native support for SQL to Apache Spark and streamlines the process of querying
data. In practice, SparkSQL conveniently blurs the lines between RDDs and relational tables.
Concretely, SparkSQL will allow developers to import relational data, run SQL queries over
imported data and existing RDDs, and easily save the output RDD over HDFS. In terms of
implementation, SparkSQL defines SQL operations as native Spark operations like RDD filter, join,
sort, union, etc. Additionally, SparkSQL includes a cost-based optimizer, columnar storage, and

	

DELIVERABLE D2.2 21

code generation to make queries faster. SparkSQL has the following four libraries which are used
to interact with relational and procedural processing:

1. Data source API: This is a universal API for loading and storing structured data. It processes
the data on the size of Kilobytes to Petabytes on a single-node cluster to multi-node
clusters.

2. DataFrame API: A DataFrame is a distributed collection of data organized into named
columns. It is equivalent to a relational table in SQL used for storing data into tables.

3. SQL interpreter and optimizer: SQL interpreter and optimizer is based on functional
programming constructed in Scala. It is the newest and most technically evolved
component of Spark SQL. It provides a general framework for transforming trees, which is
used to perform analysis, evaluation, optimization, and planning. This supports cost-based
optimization and rule-based optimization, making queries run much faster than executing
unrefined sequence operations on RDDs. At the core of SparkSQL is the Catalyst optimizer,
which leverages advanced programming language features (e.g. Scala’s pattern matching)
in a novel way to build an extensible query optimizer.

4. SQL service: SQL service is the entry point for working along with structured data in Spark.
It allows the creation of DataFrame objects as well as the execution of SQL queries.

2.4.3. Catalyst optimizer
Catalyst is SparkSQL query planner, and it is based on functional programming Scala constructs.
It is designed to let the developers easily extend the optimizer by adding their own optimization
rules (e.g. adding data source-specific rules, or support for new data types). The terminology used
by the optimizer is the following:

Tree: the main data type in the catalyst. A tree contains node objects, and a node can have one or
more children.

Rule: define as a transform function from one tree to another tree, and it is a common approach
to use a pattern-matching function and replace sub-tree with a specific structure. We can
recursively apply pattern matching on all the nodes of a tree. Catalyst applies rules until a fixed
point is achieved, after which tree stops changing.

Logical plan: series of algebraic or language constructs, as for example SELECT, GROUP BY or
UNION keywords in SQL. It is represented as a tree where nodes are the constructs, but without
defining how to conduct computation.

Physical plan: like logical, physical plan is represented as a tree but the difference is that the
physical plan concerns low-level operations.

As shown in Figure 5, Catalyst optimization starts from relations to be computed which may
contain unresolved attribute references or relations. An attribute is unresolved when we do not
know its type, or have not matched it yet to an input table. SparkSQL makes use of Catalyst rules
and the Catalog (standard API for accessing metadata in SparkSQL) to resolve these attributes.
Then, Catalyst propagates and pushes the types through expressions to generate an unoptimized
logical plan.

	

DELIVERABLE D2.2 22

Figure 5: Catalyst’s general query transformation framework in four phases.

After Catalyst generates the unoptimized logical plan, it applies a standard rule-based optimization
on the plan. Examples for the extensible set of optimization rules include predicate pushdown,
Boolean expression simplification, and projection pruning. For the next phase, SparkSQL takes the
optimized logical plan and generates one or more physical plans, using physical operators that
are implemented in the Spark execution engine. Furthermore, a final round of rule-based physical
optimizations is executed, e.g., pipelining projections or filters into one Spark map operation.
Finally, Catalyst estimates the cost of each physical plan and selects the plan with the smallest
estimated cost.

3. SDL Query Approximation Layer

We now introduce Query Approximation (QAL), an adaptive approximate query processing engine
inside SDL-Virt. QAL is constructed over Spark by extending SparkSQL and Catalyst, thereby
exploiting the robustness, performance, and scalability of a state-of-the-art platform. The
innovative nature of QAL is that it provides automated creation and adaptation of synopses
(samples and sketches) for summarizing big data, as well as transparent integration of these
synopses during query execution. The data analyst only needs to specify the query requirements
as an SQL query, along with the desired accuracy. Then, QAL automatically creates and executes
query plans for approximating the query results over big data.

Self-tuning and adaptive nature: QAL provides an automated synopses creation process that
adapts to the query workload, along with a mechanism for selecting and storing frequent synopses
in distributed RAM (as RDDs) for future usage. In particular, for each query, QAL generates multiple
approximate plans leveraging a variety of synopses. Then, it chooses to execute the plan and to
materialize the required synopses that are expected to maximize the throughput of future queries,
thereby decreasing the overall I/O cost. Preliminary results of QAL were published in [30].

Figure 6 demonstrates the overall architecture of QAL. The input of QAL comprises of a stream of
SQL queries annotated with the desired accuracy guarantees, and the input data for analysis –
possibly distributed over a Hadoop distributed file system for scalability. The desired output is an
approximate answer for each query in the stream. The core components of QAL are the query

	

DELIVERABLE D2.2 23

planner, the plan evaluator, the plan executor, the synopsis catalogue, and finally the change
detector. Precisely, as QAL receives an approximate query, the query planner analyses the query
to extract a set of logical plans, chooses the most efficient ones, and out of them generates a set
of physical plans. The difference between these logical and physical plans lies on the use of
synopses – the logical plans are synopsis-unaware plans, analogous to the logical plans in
relational databases, whereas the physical plans have some access paths or plan sub-trees
replaced by synopses. The involved synopses in these physical plans may or may not be already
materialized. We explain how the query planner works in Section 3.1.

After the candidate plans are generated, the choice of which plan should be executed, and,
subsequently, which synopses should be materialized, is taken by the cost-based evaluation
component. Contrary to the traditional approaches in relational databases which choose the plan
that reduces execution time for the query at hand, the cost-based evaluator in QAL chooses the
plan that will also optimize the throughput over the next few queries (see Section 3.2). The idea
behind this choice is that the decision as to which plan is executed influences the query at hand,
but also the next queries that may be able to use the synopses materialized for the current query.
The chosen best plan is finally forwarded to the plan executor.

All synopses generated in this process are stored in the synopsis catalogue. When the input files
are updated (updating happens, in principle, only with appends) the synopses stored in the
synopsis catalogue are also updated to reflect the new data.

Figure 6: QAL input/output, internal components and their interactions.

In term of implementation, QAL is integrated in SparkSQL by extending both the physical planner
and SparkSQL cost model to support our requirements. Recall that SparkSQL and Catalyst answer
the SQL queries by generating and executing a sequence of optimized physical operations (e.g.
aggregations, scans, projects, joins) as MapReduce actions on raw data. To enable Catalyst to
support approximate query processing, we define synopses as approximate physical operators
and extend the rules for generating the physical plans, such that they integrate and optimize
approximate physical plans. Additionally, we extend the cost model to adapt itself to the workload
and to reuse stored synopses for answering coming queries.

In the rest of this section, we continue the discussion for the internals of QAL. This includes
integrating synopses as physical operators inside the SparkSQL physical planner and introducing
an adaptive cost-based planner. As discussed before, approximate physical planning requires extra

	

DELIVERABLE D2.2 24

effort because we have to generate more than one executable plans, and they should all satisfy
user’s desired accuracy. Additionally, we detail the QAL adaptivity to the future workload which
includes predicting future queries, identifying reusable physical plans, and storing proper
synopses.

3.1. Approximate query planning
In this part, we focus on integrating QAL into SparkSQL by extending both the query planner and
cost model to exploit synopses. Due to their small size compared to the original data, synopses
improve both computational complexity and I/O cost for future queries. QAL promises negligible
overhead for creating and maintaining synopses, by parallelizing the synopses construction phase
with the exact query execution procedure. In practice, all synopses are created on-the-fly, as by-
products of query answering, thereby inducing no additional I/O.

QAL accepts and answers all SQL queries supported by Spark SQL. Similar to prior work, e.g.,
[3][12], it improves performance for queries containing aggregates (e.g., COUNT, AVG, SUM). The
query format for approximate queries follows the syntax: “with ERROR x% AT CONFIDENCE y%”,
which corresponds to aggregate results with a relative error of at most x% at a y% confidence level.
QAL adapts the query plan accordingly such that the accuracy guarantees are satisfied, and all
groups are included in the results, e.g., when a group-by is requested.

In the following sub-sections, we present a high-level overview of the core concepts of QAL.

3.1.1. Approximate physical operators
Synopses in QAL are promoted to first-class citizens, and are used for summarizing both raw data
(base relations) and query sub-plans (e.g., the results of an aggregator over a join). To achieve this
goal, synopses are included as approximate operators in the execution plans, cost as all other
physical operators, and are transformed to fully pipelined and distributable code during the
physical plan generation. As an example, an approximate answer for point query can be estimated
via Count-min sketch, dyadic ranges, uniform sample, or distinct sample; thus, the physical
planner proposes various execution plans for the approximate query. Each generated plan
comprises various synopses in different levels of the execution tree so that the planner can
produce more efficient plans, and to promote the reusability of synopses by matching a variety of
synopses across different queries.

Upon receiving the input query, QAL generates the optimal logical plan for the query by exploiting
Catalyst’s standard optimization rules. Then, it generates multiple physical plans for the optimized
logical plan by replacing the aggregator operators with (possibly approximate) aggregators.
Focusing on aggregations, the planner first identifies all query sub-plans rooted on (partial/eager)
aggregators. For each, it injects a synopsis operator satisfying the user’s accuracy requirements,
just below the aggregator operator, and modifies the aggregator to account for the synopsis (e.g.,
a SUM over a sample would require scaling to account for the full dataset). The synopsis operator
represents the potential to efficiently approximate the underlying sub-plan using a (possibly not
yet existent) synopsis.

The above process entails several challenges. First, the process of generating candidate plans is
different compared to planners found in traditional relational databases. Unlike traditional query
planning, the planner now also needs to consider the required approximation guarantees and
stratification requirements while constructing the plans. Furthermore, when pushing down a
synopsis in the plan, the synopsis, as well as its corresponding approximate aggregation operator,

	

DELIVERABLE D2.2 25

may require modifications. Second, the approximate aggregators in the plan need to be
configured. This boils down to choosing between the supported types of sampling and sketches,
and configuring the selected synopses (e.g., for uniform sampling, setting the sampling
probability). Third, in order to reuse the synopses in future queries, the planner must store
metadata representing characteristics of each synopsis so that it can map constructed synopses
to the next plans. In the following, we describe how the planner handles these challenges.

3.1.2. Generating candidate physical plans
The planner generates the set of approximate physical plans by injecting synopses as physical
operators inside the execution tree. Subsequently, QAL starts pushing the synopses down in the
plan, closer to the raw data, as an effort to enable executing the plan with existing synopses, or to
generate more re-usable synopses. The planner must preserve the accuracy and functionality of
synopses while it is injecting and pushing down approximate operators, so we define specific rules
for each type of operator to correctly and effectively integrate it inside the plans.

For samples, the planner relies on the push-down rules for samples introduced in [12]. Whenever
QAL pushes a sample operator under a filter on p, it needs to account for two possibilities. If the
distribution of values of predicate p is uniform, the new operator is moved under the filter
unaltered, since a uniform sample over that attribute will not reduce the number of groups
appearing in the final. On the other hand, if the distribution of the values of p is skewed (some
groups appear infrequently), QAL needs to stratify the underlying output on p. Thus, QAL adds the
attributes appearing in p which follow a skewed distribution into the stratification set.

Considering pushing samples under the joins, given a join R with S with join predicates j, the
planner pushes the sample below the join, to the side of the join on which the aggregation takes
place (say, the side of R), and modifies the stratification attributes of the sample to include the
attributes from j that are contained in. Finally, if the join predicate is not a grouping attribute, QAL
introduces a partial aggregation after the join. The above push-down process guarantees that (i)
the generated physical query plan will gather enough samples from each of the groups to satisfy
the user’s accuracy requirements, and (ii) the overall sampling process overhead will not exceed
the performance gains. We discuss how result accuracy is estimated efficiently and reused across
different queries in the next section. In terms of implementation, the push-down strategies are
implemented as rules in the Catalyst optimizer and are executed at every query.

Example: Assume that we have a table companies with attribute province, and QAL receives input
query “SELECT COUNT (*) FROM companies WHERE province= ‘Taranto’ WITH CONFIDENCE 95
AND ERROR 5”. The first step is generating an optimized logical plan and passing the logical plan
to the physical planner. As an instance, the purple tree in Figure 7 depicts the optimized logical
plan of the input query. The planner can approximately answer the input query utilizing different
execution strategies such as exact execution, sampling data, or constructing sketches. As shown
in Figure 7, the red tree represents the exact execution of input query that reads the table as an
RDD, filters the rows, and counts the number of remaining rows.

Since the query allows a margin of error, along with the exact plan, the planner produces
approximate plans that can leverage synopses. In our example, the input query is a simple point
query that can be answered by samples (uniform or distinct), or sketches (count-min sketches, and
count-min sketches with dyadic ranges – see Figure 7). The planner injects potential approximate
operators and changes the exact aggregation operator (AggregateExec) to approximate one
which scale the answer of samples. Both samples are pushed down, just above the RDD scans to
maximize the re-usability of samples for future queries and to decrease computation cost of
higher levels. For plans with sketches, we eliminate filters and construct count-min sketches from

	

DELIVERABLE D2.2 26

attribute province, and then estimate the aggregation operators by querying the sketches instead
of the tables.

3.1.3. Accuracy guarantees
While generating and exploring the potential plans, the planner needs to ensure that the user’s
accuracy requirements are satisfied. For this, QAL relies on previous analytical results [12][31],
which we outline below. When using sampling, QAL uses the Horvitz-Thompson (HT) estimator
[32] to calculate unbiased estimators of the true aggregate values. Confidence intervals are
computed using the Central Limit Theorem (CLT) [33]. Due to the distance of the samplers to the
aggregation operators, we use the notion of dominance between query expressions as defined in
Quickr [12], which ensures that plans resulting from transformation rules used by the optimizer
have no worse variance of estimators and no higher probability of missing groups than the plan
with only one sampler before the aggregation operator. In terms of implementation, a naive way
to compute the HT estimator squared error requires a self-join and can take quadratic time since
it checks all pairs of tuples in the sample [32]. However, for stratified and uniform sampling, QAL
calculates the error in a single pass by utilizing the observation of [12] that to compute the standard
error for each group, we only need to take into account the tuples with the same stratification key
(grouping key). Therefore, we estimate the expected error for each group by building a distributed
hash table, using as a key the values of the stratification (grouping) attribute, as value the running
estimated error for that group and the corresponding list of sampled tuples. For every sampled
tuple, QAL updates the error of that tuple’s group by using the HT estimator error formula, leading
to a single-pass, linear complexity algorithm.

Count-min sketches offer error guarantees relative to the L1 norm of the summarized relation [31].
Particularly, let f(x) denote the real frequency of key x, and f'(x) the frequency estimated from the
sketch. Then, the sketch is configured such that f'(x)− f(x) < εN where N represents the L1 norm of
the frequencies for all keys.

3.2. Adaptivity to query workload
The remaining question is selecting and executing the most beneficial plan to maximize gain,
which is the throughput of AQP for future queries. To alleviate this problem, we proposed an
adaptive cost-based model that evaluates generated approximate physical plans based on their
synopses re-usability for a window of future queries. That means QAL automatically decides which
synopses to create, store, and use for answering each query while it is maximizing the gain. In
other words, the cost-based model combines two main goals: (a) promoting the plans that
generate reusable synopses, pertinent to many different queries, and, (b) deciding which of the
generated synopses will be stored in the synopsis warehouse, and which will be deleted, to satisfy
the space quota.

	

DELIVERABLE D2.2 27

Figure 7: Logical plan (purple) and its candidate physical plans (exact plan is depicted
as red, and approximate plans are blue, with the approximate operators noted with
orange fonts).

3.2.1. Cost-based planner
Upon receiving the query q, the planner generates a set of approximate physical plans, denoted
by P(q) = {p1, p2, ...}. These plans utilize synopses as physical operators that may, or may not yet
exist, and they all satisfy the approximation requirements of the query. The next step is to estimate

	

DELIVERABLE D2.2 28

the cost of each plan and its performance gain, consequently, when ranking the plans, the cost-
based model focuses on maximizing long-term throughput, i.e., over the future workload, as
opposed to minimizing only the cost of the query at hand. Clearly, we have limited available space
to store synopses for future queries, denoted maxSpace, so that the objective function is selecting
the set of plans and respective synopses S that will maximize the total gain (future throughput).
Formally, the optimization problem is as follows:

maximize gain(Q+
i, S)

subject to ∑ |𝑠| 	≤ 	𝑚𝑎𝑥𝑆𝑝𝑎𝑐𝑒	+∈-
It is useful to define the synopsis gain metric, i.e., how much does each set of synopses S
contribute to the performance of each query. Formally, gain(q, S) = cost(q, φ)	− cost(q, S), where
the cost(q, S) denotes the minimum cost of any plan in P(q) for answering q, given only the
synopses in S. In the case of S = φ, this will be the cost of the most efficient plan that does not
utilize synopses and returns the exact answers. For a given Q+

I we maximize the query throughput
by minimizing the total cost of executing these queries, i.e., minimize q ∈Q+

i cost (q, S), or
equivalently, by maximizing their corresponding gain: maximize q ∈Q+

i gain (q, S). For convenience,
we slightly overload the notation by using gain (Q+

i, S) to denote the gain overall queries using
synopses in S.

Figure 8 represents a simple cost-based planning of QAL for input query q20 based on expected
future queries q21, q22, q23. For this example, we skip the mechanism of predicting future queries
and postpone it to the next section. As it was discussed, the planner generates multiple
approximate physical plans for the q20 named P1, P2, and P3 including their corresponding synopses
and execution time. In order to evaluate each candidate plan, we must look to potential future
plans; thus, QAL feeds expected future queries to the planner and generates possible physical
plans named FP1 to FP10 with their related synopses. Now, the cost-based planner can estimate
re-usability of P1, P2, and P3 synopses and the future throughput for each plan. Based on execution
time, P1 provides fastest answer for the current query, but It has the least future throughput. On
the other hand, by executing P2, we decrease the current response time (around 0.4 second), but
we have created set of synopses that covers most of future queries. Consequently, future queries
will be executed faster due to reusing synopses and less I/O.

Even though the problem is well-defined, we face two major challenges: (a) holistic optimization
can be CPU-intensive, and (b) the future queries and their potential synopses are not yet known.
We explain how these issues are addressed.

Formally, the first problem can be reduced to a variant of the NP-hard knapsack constraint
problem. This happens because of correlations between synopses, i.e., each synopsis can be used
for answering more than one query, and some queries are answered by more than one synopsis.
Therefore, we cannot hope for a tractable exact solution. Luckily, we can approximate the solution
within a constant factor by noticing that the objective function is a monotone sub-modular
function, i.e., the gain provided by every single synopsis is only reduced as the set of synopses in
S increases. For this special case, there exist several efficient approximation algorithms. We employ
the efficient greedy algorithm of [34], which guarantees that the gain of the constructed set will
be within a factor (1−1/e)/2 of the maximum gain. In a nutshell, the algorithm builds S gradually by
starting from an empty set and adding synopses one-by-one until the quota is filled. At each step,
synopses are chosen based on their marginal gain, i.e., how much is the additional gain each
synopsis brings when added in S. After S is created, the QAL checks all synopses that are already
stored in the synopsis buffer and warehouse and updates them accordingly: all synopses not
contained in the newly computed S are deleted.

	

DELIVERABLE D2.2 29

The second challenge concerns the definition of the future query, Q+
i. In practice, we cannot

expect to know the queries contained in Q+
i during the cost planning. We, therefore, have

proposed two solution: (a) rely on the standard assumption that recent queries are a good
representation of the following queries [26] (b) leverage Machine Learning (ML) predictive models
to forecast future physical operators (indirectly, synopses). We detail both solutions in Section 3.3.

3.2.2. Synopsis warehouse
QAL uses a set of automatically constructed and tuned synopses to summarize both the raw data
(the base relations) and intermediary results of sub-plans (e.g., join results). Currently, it exploits
two types of synopses (samples and sketches) each being appropriate for answering different
query families. All synopses are constructed as byproducts of query answering and are saved in
the synopsis warehouse, in HDFS (Hadoop Distributed File System). Along with synopses, QAL
stores statistics of the dataset (distribution of values, number of distinct values), which are
calculated on-the-fly during the first access to any table. To control monetary cost, the synopsis
warehouse is subject to space quota, which is set at initialization and can also be modified at
runtime from the administrator.

Figure 8: The cost-based planner evaluates q20 candidate physical plans based on
future throughput.

	

DELIVERABLE D2.2 30

3.2.3. Synopsis buffer
The plan chosen for execution may require the generation of a new synopsis (i.e., if the synopsis
is not already in the synopsis warehouse). Generation of a new synopsis on-the-fly may still be
beneficial for the query at hand, in order to reduce CPU usage of operators higher in the plan. In
this case, the new synopsis will be temporarily stored in the synopsis buffer – a fixed-size buffer
implemented as a sequence of in-memory RDDs in Spark. The buffer offers two main benefits: (a)
it serves as a fast main-memory cache, which offers a significant boost for workloads exhibiting
temporal locality, and, (b) it decouples the decision of writing the synopsis in the HDFS-based
synopsis warehouse – an I/O expensive operation – with the process of query answering which
needs to be executed with a very small latency. When the buffer is full, the tuner decides which
synopses should be permanently stored in the synopsis warehouse.

3.2.4. Metadata store
Effectiveness of the planner depends on the existence of metadata that characterizes the past
workload and the synopses that could speed-up future workload. The metadata store is a main-
memory, synopses-centric metadata repository that keeps rich statistics about the properties,
impact, and popularity of each synopsis. In particular, the store keeps details for all synopses
contained in all plans generated by the planner – even the ones that are not chosen for execution.
These details include: (a) the logical definition of the synopsis (the logical sub-plan whose results
are summarized by this synopsis), (b) stratification and accuracy requirements of the synopsis, (c)
whether the synopsis is saved in the synopsis warehouse or not, and, (d) the list of recent queries
that could utilize this synopsis to improve performance, their estimated cost when this synopsis
exists, and their cost if an exact query plan (without synopses) would be chosen instead. The
purpose of this metadata is twofold: (a) to assist the planner to estimate the cost of each candidate
plan, and (b) decide which synopses will maximize throughput, i.e., because they will improve
many different sub-plans.

Figure 9 presents an overview of QAL running three queries over three relations R, S, T. For
simplicity, we assume that the synopsis buffer fits one synopsis, and the warehouse fits three
synopses. Just before the arrival of a Q1, the synopsis warehouse already contains synopses S1, S2,
and S3. S1 is a sample of relation T. Synopses S2 and S3 refer to another table, not relevant to the
three queries. During Q1, the planner proposes two candidate plans (cf., Figure 9a). The first one
contains synopsis S4, which summarizes R on S, and the second contains synopsis S5 of R. Notice
that neither of the two synopses exists. The two plans are costed, and the metadata store is
updated with the corresponding properties of S4 and S5. The cost-based planner identifies the best
plan (in this case, the one with S4), and sends it for execution. During execution, S4 is generated
and saved in the in-memory synopsis buffer. When Q2 arrives, the planner identifies two candidate
plans. (cf., Figure 9b), which rely on the nonexistent synopses S6 and S7 respectively (synopses S1
and S4 cannot be used because of different grouping attributes). Again, the planner updates the
metadata stored with the corresponding properties of the two candidate synopses. Now, as the
synopsis buffer is full, QAL first needs to free up space, so that either of the candidate synopses
can be generated. The synopsis warehouse is also full. By estimating the long-term benefit of each
synopsis, QAL decides to keep S1, S3, and S4 in the warehouse, and to execute the plan that requires
S5. The plan is executed, and S7 is stored in the synopsis buffer. During Q3, the planner proposes
two plans (cf., Figure 9c), the first replacing the scanning of relation T with S1 which is already
saved in the warehouse, and the second utilizing a non-existent synopsis S8. The plans are sent to
the cost-based planner, where the first one is chosen and sent for execution.

	

DELIVERABLE D2.2 31

3.2.5. Matching approximate query operators to
synopses
Costing of the physical plans requires efficiently matching the synopses contained in the query’s
plans to the synopses stored in the synopsis warehouse and buffer. This matching is enabled
through the metadata store. Particularly, each synopsis (candidate or materialized) corresponds
to a unique physical sub-plan – the one of which the results it summarizes. Therefore, the sub-
plans for the query at hand are compared to the sub-plans of the synopses contained in the
metadata store. We say that a query sub-plan matches a synopsis when: (i) the accuracy
guarantees of the synopsis satisfy the query requirements, and (ii) the synopsis sub-plan subsumes
the query sub-plan. For the latter, QAL ensures that the query sub-plan is covered by the synopsis
regarding join and filtering predicates as well as the projected columns.

Particularly, QAL compares the input relations, the join and filtering predicates as well as the
output attribute set. The synopsis sub-plan must have identical join predicates, its filtering
predicates must be weaker than, or equal to the filtering predicates of the query, and its output
attributes must be a superset of the corresponding parameters of the query sub-plan [35]. Some
mismatches are addressed by adding filtering and projection operators directly above the query
sub-plan, to remove extraneous tuples and attributes.

Considering accuracy, a synopsis is a candidate for a sub-plan if (i) the set of stratification attributes
of the stored synopsis is a superset of the stratification attributes of the sub-plan, and (ii) the

Figure 9: Example of warehouse and buffer management. The dotted ellipses are
prospective synopses, the normal-line ellipses are executed synopses, and square

is reused synopses.

	

DELIVERABLE D2.2 32

aggregation function and the aggregate columns are identical to those of the synopsis and the
accuracy requirement of the query generating the synopsis is equal or weaker than of the current
query. By ensuring the former, guarantees group coverage i.e., QAL results will contain all groups,
whereas the latter ensures that the aggregates will have constrained error [3]. For example Q1:
“SELECT dept, AVG(salary) FROM Employees GROUP BY dept” will generate a sample over
Employees stratified on dept. Subsequent query Q2: “SELECT dept, AVG(salary) FROM Employees
WHERE gender = ’male’ GROUP BY dept” will be able to use the previous sample, since, the created
sample is more general and can put an additional filter in the query plan. However, to use this
sample, salaries should be uniformly distributed, irrespective of gender. Sub-plan matching is
expensive. Therefore, utilizes an index to speed-up this process. Specifically, all candidate
synopses contained in the metadata store are indexed using their base relations as the key. In the
case of joins, the join attribute(s) are also included in the key. This index, although simple,
effectively limits the search space and the lookup time to find suitable synopses for each sub-plan.

3.3. Predicting the future queries
The performance of QAL strongly depends on the choice of synopses to construct. In general,
synopses need to be as reusable as possible, i.e., have a very small cost/utility ratio, where cost
correspond to the space they occupy and utility to the expected performance boost they can yield
for future queries. However, the future workload is unknown. Therefore, it is vital for QAL to be
able to predict the future queries, with reasonable accuracy. In this section, we detail two different
approaches to predict future queries. First, we look at a simple, yet effective technique based on
window-based forecasting. Next, we introduce a more advanced technique that relies on a
predictive ML model and enables identifying more complex query patterns. Notice that the latter
model is not yet integrated in QAL.

3.3.1. Window-based query prediction
A simple approach for forecasting the future is looking into the past. We could maintain a sliding
window w over previous queries to have a good approximation of the next, unseen queries. In
practice, we cannot expect to know the queries contained in Q+

i during answering queries.
Therefore, we rely on the standard assumption that recent queries are a good representation of
the following queries [29]. For this, we keep track of the last w queries, denoted as Q−

i = {qi−w+1,

qi−w+2, …, qi}, and use their proposed plans to estimate gain (Q+
i, S).

The best value for w depends on the task at hand which determines the repetitiveness in the query
workload. Therefore, the planner dynamically adapts w starting from a small value. For tuning size
of the window, the planner identifies (without building) the set of best synopses using a slightly
larger and a slightly smaller w value, i.e., w+= (1 + α) *w and w− = (1−α) *w, with α ∈ (0,1). At the next
invocation, the planner examines which of w−, w, or w+ would minimize execution time for the
queries that arrived since the last invocation and sets w to that value for the next tuning round.
Since all necessary statistics for estimating execution time are already contained in the metadata
store, this computation is very efficient.

3.3.2. Predicting approximate operators
Window-based query prediction is effective, as long as the query workload is quasi-static, i.e., it
changes very slowly. However, it fails to identify more complex query patterns. For example,
consider the typical scenario, where the data analyst needs to process a huge number of datasets

	

DELIVERABLE D2.2 33

that satisfy a condition, as follows: (a) first, the dataset is loaded, (b) the data analyst executes a
couple of queries for checking the quality of the dataset, (c) the data analyst executes a sequence
of data exploration queries. The described query load has the following critical property: the next
query depends on the results of the previous few queries. In such scenarios, a sliding window
approach fails to successfully predict the future workload.

For such workloads, we can leverage more complex predictive ML models that learn the nature of
the workload. There are a plenty of works exploiting ML for query optimization, e.g., for SQL
queries clustering [36], predicting the query resource usage [37], query response time [38],
database monitoring [39], and estimating output cardinality [40][41]. However, predicting the next
SQL queries is difficult, and, to the best of our knowledge, it is not yet addressed. For QAL, we
instead address the simpler problem of predicting the frequency of each physical operator in the
next – unknown – queries. This offers two advantages: (a) it is easier to address with existing
models, (b) the physical operators have a simpler representation (vectorized form) compared to
SQL queries, and therefore they enable decent prediction with less training data. Since all synopses
are defined as physical operators, prediction of physical operators directly translates to estimation
of the cost: utility function of each candidate synopsis.

Example: We use notation qi to represent the i’th SQL query, and oj to represent physical operator
j contained in one or more of the considered physical plans for qi. Consider the following
workload:

Query Operators Query Operators Query Operators

q1 on dataset1 o1, o2, o4, o5 q5 on
dataset2

o1, o2 q9 on
dataset5

o1, o2, o4, o5

q2 on dataset1 o1, o2 q6 on
dataset2

o2 q10 on
dataset6

o1, o2, o4, o5

q3 on dataset1 o2 q7 on
dataset3

o1, o2, o4, o5 q11 on
dataset6

o1, o2

q4 on
dataset2

o1, o2, o4, o5 q8 on
dataset4

o1, o2, o4, o5 q12 on
dataset6

o2

Assume that we are using the sliding-window prediction model, and the data analyst executes the
first 10 queries on the corresponding datasets. As soon as q11 is observed, based on the frequencies
of operators observed in the sliding window, QAL will predict that the next – unseen – query (q12)
will be similar to q10, but on a new dataset. Therefore, it will not construct or save synopses while
answering q11, unless these can also optimize q11. Instead, our goal with using an ML-based
predictive model is to enable QAL to identify that the next unseen query, q12, will continue the data
exploration process that started with q10, and therefore QAL will optimize for the physical operator
o2 while answering q11.

3.3.3. Approximate operator vectorization
Typically, ML models assume numeric values (vectors) as input and expected output. Therefore,
our query plans should be converted to a numerical vector that preserves the characteristics of
operators. This procedure is called vectorization, and it plays a vital role in the efficiency of ML
models. In our case, the feature that is meaningful for our model is the type of operator, target
table attributes, and approximation properties of the operator.

	

DELIVERABLE D2.2 34

There exist a few recent studies for vectorizing the SQL queries, which are however not directly
applicable to our case. Join cardinality can be predicted by vectorizing each query as a collection
of a set of tables, a set of join columns, and a set of predicates [40]. A similar vectorization is used
for predicting group-by cardinality [40], this time however including the group-by columns
instead of the join columns. Another study [42] encodes the query’s join graph as an adjacency
matrix, and converts the execution plan into a tree vector. [38] instead stores the type of operator,
the number of output records, and response time of input query. Marcus et al. [41] encodes the
join relations and the position of the join in the execution tree. Lastly, [37] encodes both the SQL
query text (e.g., number of nested subqueries, selection predicates, join predicates, sort columns,
and aggregation columns), and the query plan by vectorizing cardinality of operator instances and
their output records.

We define approximate physical operators as a binary vector that encodes the type of synopses,
the offered accuracy, and table attributes. Therefore, the total size of the vector is equal to the
number of all attributes plus the different types of synopses for various levels of accuracy. Assume
a database comprises two tables each with 5 attributes, and it supports two types of samples
(uniform and distinct samples) with varying accuracy 80, 85, 90, 95; consequently, the size of the
vector is 22 bits (10 bits for encoding attributes and 8 bits for enumerating any possible synopses
with different level of accuracy). To convert an approximate operator to a vector, we set bits of
the attributes that are summarized to 1, and based on the type and accuracy of the synopsis, one
of 8 bits of operator types is set to 1.

3.3.4. Predictive model
Recurrent neural networks are a type of artificial neural network designed to recognize patterns
in sequences of data, such as numerical times series, data emanating from sensors, stock markets,
etc. What differentiates RNNs from other neural networks is that they have a temporal dimension,
which enables them to take time and sequence into account. In particular, LSTM [43] is a kind of
recurrent neural network that is good at learning dependencies between two points in a sequence
that are separated very far in time. For example, learning to predict a word in a long sentence
where the word strongly depends on some other word that occurred much before in the same
sentence. A similar scenario occurs in query workloads, where the current queries may exhibit
similar patterns sequences of queries issued at some point in the past. This cannot be captured
and predicted by the window-based approach which only learns from recent queries. Additionally,
when the user starts to shift his analysis, the future queries will become unrelated to the previous
ones, hence the window-based approach will hinder the adaptivity of the planner. To alleviate
these problems, the LSTM model maintains memory and goes over the past workload for multiple
times to learn the possible patterns (e.g., query shifting) regardless of their occurrence time. This
capability is not present in the window-based approach, thus making LSTM a suitable technique
to fulfil QAL requirements.

4. Integration with other SDL components
and deployment

QAL provides adaptive approximate query processing over distributed large datasets. Each layer
of SDL can rapidly import its data into QAL and submit approximate queries on-the-fly. QAL

	

DELIVERABLE D2.2 35

functionality is exposed through a REST API. The API enables users to import data and to submit
approximate queries. In the following, we detail on this API.

Input Query

QAL accepts SQL queries over ‘relational-type’ tables. The SQL queries are annotated with the
desired approximation guarantees, e.g.,

SELECT COUNT (*) FROM Table1 WITH CONFIDENCE 95 AND ERROR 5

Input Data

Data can be directly uploaded to QAL via a REST API, or imported from the Proteus API. QAL
accepts various input formats (e.g., CSV, Parquet, ORC, Avro, or JSON).

Output Data

The results are output as tables in CSV format.

Service API

The following is offered by a REST API:

Submit a query: http://x.x.x.x:port/query?q=your_query

Get existing tables name and their attributes in QAL: http://x.x.x.x:port/tablesName

Remove a table from QAL: http://x.x.x.x:port/removeTable?TableName=table1

Add a table to QAL: http://x.x.x.x:port/addTable?TableName=table1&format=csv&path=location

Download a table from QAL: http://x.x.x.x:port/downloadTable?TableName=table1&format=csv

Connect to an external database DB via JDBC (e.g., connect to RAW or Proteus), so that the raw
data is read from DB and is not replicated in QAL:

 http://x.x.x.x:port/connectDatabase?DBurl=somewhere&user=tue&pass=***

5. Experimental results

In this section we present our preliminary experiments and results that demonstrate the efficiency
of QAL and its superiority on dynamic workloads compared to the state-of-the-art AQP engines.
The experiments are executed with a preliminary implementation of QAL, which we refer to as
Taster [32]. Taster utilizes two types of samples (uniform and distinct samples) and Count-min
sketches. Furthermore, it uses only the naïve, sliding-window based model for predicting the
future operators.

We start by comparing Taster with the state-of-the-art AQP engines over different benchmarks.
Then, we detail individual performance gains and approximation error for TPC-H queries.
Furthermore, we evaluate the robustness of QAL to workload shifts, i.e., changes in query
stratification attributes, the accessed tables, and query predicates. Lastly, we examine the impact
of the different size of sliding window and various storage budgets on the adaptivity of the cost-
based planner to the future workload.

	

DELIVERABLE D2.2 36

We compare Taster against three state-of-the-art systems: Quickr [12], BlinkDB [3] 2, and vanilla
SparkSQL which we refer to as Baseline. We compare the systems using industry standard
benchmarks and a micro-benchmark. Specifically, we use TPC-H with scale factor 300 (300GB
before compression) along with the TPC-H queries3, and TPC-DS with scale factor 200 (200GB
before compression) along with a set of 20 TPC- DS queries. To examine suitability of Taster under
various workloads we also use a synthetic benchmark of an online grocery store (instacart) [44],
scaled 100× (∼ 120GB before compression). All datasets were stored in the Parquet-compressed
data format.

Implementation. To have a fair comparison, we integrated all systems to SparkSQL 2.1.0, and
extended the Catalyst built-in optimizer accordingly. For Quickr, we implemented the three
sampler operators (Distinct, Uniform, Universe) and added all rules described in [12] to Catalyst.
For BlinkDB, we followed the algorithms described in [3] to choose the same set of samples that
the mixed integer linear program would select for the different workloads. We then generated the
samples and executed the queries over that set of samples. Taster was implemented in Scala, over
SparkSQL. We integrated Taster's tuner and optimization rules, as well as rudimentary costing
capabilities into Spark Catalyst. Both query planner and tuner are centralized and run locally on
the driver node of the Spark cluster. We implemented Taster's sketch-join algorithm using the
serializable implementation of count-min sketch native to Spark 2.1.0. The uniform sampler is also
native to Spark 2.1.0. The distinct sampler operator was implemented as an additional operator
over DataFrames. For robustness and scalability, all data, metadata, and materialized intermediate
summaries of Taster were stored in HDFS, except of the in-memory buffer, which was
implemented as persisted RDDs.

Methodology. To compare all systems in a variety of workloads, we execute query sequences over
all three datasets. To emulate workload shifts and examine system adaptivity, we instantiate 200
queries from the benchmark templates and issue them in random order. For each benchmark we
randomly choose one of the available templates with equal probability (uniformly) and generate a
new query by randomly choosing the predicate value. For TPC-H, both Taster and BlinkDB are
tested with storage budgets 50% and 100% of the size of the compressed dataset. For TPC-DS and
instacart, the queries have fewer prospective stratification attribute sets and require less space for
samples. Therefore, we present results only for the 50% storage budget.

Figure 10 presents the required time for executing all 200 queries for each of the workloads. The
reported time includes initialization time (i.e., the creation of the samples for BlinkDB). As
expected, BlinkDB with only 50% budget requires less time for constructing the samples, but
incurs a higher execution time since less queries are approximable by the set of available samples.
Specifically, for TPC-H (Fig. 5.1 a), BlinkDB 50% offers 2.25× speed-up compared to the Baseline,
and requires 251 seconds for pre- computing the sample, whereas BlinkDB 100% offers 3.36×
performance increase but spends 380 seconds on sampling. Quickr requires no preprocessing,
but offers a smaller performance boost (1.2×). This is attributed mainly to the relevantly shallow
queries of TPC-H, as well as the small network congestion of the cluster. Finally, Taster achieves
low response time and ∼ 3× speed-up without pre-computing the samples, by adapting to the
query workload. We also see that Taster with 50% and 100% storage budget have a similar
performance (difference is less than 10%), precisely because the system adapts to the workload
and does not require all synopses to be present at all times.

	
2 BlinkDB requires all queries to be known a priori, in order to decide on the samples. Therefore, we assumed the existence of an oracle

that provides all queries to BlinkDB at initialization time. Clearly, this assumption strongly favors BlinkDB in the comparison.
3 We used 18 out of the 22 TPC-H templates (Q2 cannot be approximated, Q4, Q21 and Q22 include EXISTS statement which require key

of dimension relation thus no gain from approximation).

	

DELIVERABLE D2.2 37

The results with TPC-DS and instacart workloads (Figure 10 b-c) were qualitatively similar,
confirming the applicability of Taster to different data and workload characteristics. In particular,
Taster has slightly better performance from BlinkDB, yet without requiring any initialization time.
For TPC-DS, this performance improvement is attributed mainly to the capability of Taster to
summarize also intermediate results (specifically, the join between tables store sales and date dim,
which appears frequently in the workload), rather than only base relations. For instacart, the
increased performance of Taster comes from the extensive use of sketches.

Figure 11a presents a CDF of the speed-up of Taster for TPC-H queries. Taster slows down less
than 10% (∼ 0.8×) of the queries, mostly due to the planning and tuning overhead. However, more
than 50% of the queries are being sped-up more than 6×. The maximum speed-up (13×) is achieved
using sketches.

We also verified that the approximations of Taster are within the desired accuracy requirements,
with high probability. Figure 11b presents a CDF of the observed aggregation error, for the TPC-H
queries. The user requirements for these experiments are: (a) all groups should be detected, and
(b) aggregate error should be less than 10%. By employing distinct sampling with stratification
guarantees, Taster misses no groups. Furthermore, more than 93% of the queries have error less
than 10%, and all queries have error less than 12%. These numbers are very close to the accuracy
achieved from BlinkDB with offline sampling. Summary. Taster substantially outperforms Quickr
and offers comparable performance to BlinkDB, yet without requiring a priori knowledge of the
workload, and without an offline sample pre-computation. Hence, Taster enables instant access
to data while adhering to user accuracy requirements.

Figure 11c presents the execution time and storage requirements of Taster at each query. Taster’s
tuner continuously revaluates the synopses stored in the synopsis warehouse, and it frequently
drops and build some synopses while executing the queries. At the beginning of each epoch,
Taster quickly recognizes the new useful synopses, and makes space for them by evicting the
older ones. During the last epoch, the tuner decides to materialize the synopses earlier, since the
new synopses provide a higher prospective gain. To emulate a real-world scenario, we execute a
sequence of 80 TPC-H queries, generated from the 18 used query templates by varying the
filtering predicates. We split the queries into 4 epochs of 20 queries each, based solely on the
query execution time, i.e., queries in each group have similar execution time when executed using
Baseline. The following templates are used per epoch: (1): q6, q14, q17 (2): q5, q8, q11, q12 (3): q1,
q3, q16, q19 (4): q7, q9, q13, q18. As the grouping relies only on query execution time, the queries
within each epoch may use different synopses. For example, in epoch (2) template of q5 requires
a synopsis with stratification on order key whereas template of q8 requires stratification on part
key. The storage budget for Taster is set to 35GB.

Figure 10: End-to-end execution time for different workloads.

	

DELIVERABLE D2.2 38

We now evaluate the adaptivity of the tuner in terms of the sliding window length w used for
predicting the future queries. We execute a sequence of 200 TPC-H queries, generated by using
the 18 query templates. The queries are executed in random order. To evaluate the impact of the
adaptive sliding window, the same query workload is executed using three static configurations
(w = 5, w = 10, and w = 50), and the adaptive configuration where w changes according to the
queries. Storage budget is fixed to 35GB. Figure 11d presents the cumulative execution time for all
queries, for the considered configurations. Taster with adaptive sliding window length starts with
window size 5 and increases/decreases according to the correctness of prior predictions. During
this experiment the window size fluctuates between 12 and 17, but never converges. This
exemplifies the need for an adaptive sliding window length. Among the static window
configurations, Taster with window size 10 performs the best, but it is still noticeably slower than
the adaptive version. Window sizes 5 and 50 lead to fairly bad performance, i.e., the predictive
power of the tuner for future queries is annihilated.

We now investigate how Taster adapts to changing storage budget. We run a sequence of 250
TPC-H queries in random order, progressively changing the storage budget configuration. To
emulate a real world scenario (e.g., adapting the budget to workload), we fluctuate storage budget
a lot, to correspond to 20%, 50%, 100%, 50%, 100% of the dataset. Figure 11e presents the average
speed-up for these configurations compared to Baseline. With 20% of storage, Taster fits only one
sample and a sketch, thereby providing very limited approximation potentials. When given 50%,
Taster has sufficient space to keep almost all synopses, whereas a budget of 100% enables Taster
to keep all synopses. When storage allowance is reduced, Taster automatically invokes the tuner
to keep the synopses that will maximize the gain, thereby minimizing the performance impact.

(a) individual performance
gains

(b) approximation error (c) adaptation to query
workload

(d) varying the horizon size (e) varying the storage
budget

Figure 11: Experimental results for Taster.

	

DELIVERABLE D2.2 39

6. Conclusion

The exponential increase of data no longer allows real-time data analytics with exact answers,
even with state-of-the-art hardware and parallel implementations. Approximate query processing
allows users to get approximate results with error guarantees.

In this report, we have presented QAL, the Query Approximation Layer of SmartDataLake. QAL
introduces a novel adaptive approximate processing engine that constructs the synopses which
maximize the future throughput. More specifically, QAL proposes multiple approximate plans for
an individual SQL query, and then chooses and executes the plan whose synopses will be mostly
used in future queries, and stores the generated synopses in a warehouse. The three main modules
of QAL are the query planner for generating the logical and physical plans, the query evaluator for
choosing between the plans, and the synopsis warehouse for storing the synopses. Unlike the
other state-of-the-art AQP engines that only utilize samples, QAL leverages sketches (e.g., Count-
min sketch with dyadic ranges) so that it can propose various execution plans for the approximate
queries. The synopses are defined as a physical operator, and they are injected into the execution
plan. QAL pushes down the synopses in the execution plan that not only decreases the number of
records to be calculated but also Increases the reusability of synopses.

The efficiency of QAL heavily depends on the quality of predicted future queries. To address this
problem, QAL uses two different approaches: a window-based query prediction and an ML
predictive model. The second approach is a novel technique that forecasts the potential
approximate operators rather than the future SQL queries. Our preliminary results demonstrate a
significantly better performance of the proposed adaptive AQP compared to state-of-the-art AQP.

References

[1]	 S.	Acharya,	P.	B.	Gibbons,	and	V.	Poosala,	“Congressional	samples	for	approximate	
answering	of	group-by	queries,”	in	Proceedings	of	the	2000	ACM	SIGMOD	international	
conference	on	Management	of	data,	2000,	pp.	487–498.	

[2]	 S.	Chaudhuri,	G.	Das,	and	V.	Narasayya,	“A	robust,	optimization-based	approach	for	
approximate	answering	of	aggregate	queries,”	SIGMOD	Rec.	(ACM	Spec.	Interes.	Gr.	
Manag.	Data),	vol.	30,	no.	2,	pp.	295–306,	2001.	

[3]	 S.	Agarwal,	A.	Panda,	B.	Mozafari,	S.	Madden,	and	I.	Stoica,	“BlinkDB:	Queries	with	
Bounded	Errors	and	Bounded	Response	Times	on	Very	Large	Data,”	2012.	

[4]	 B.	Babcock,	S.	Chaudhuri,	and	G.	Das,	“Dynamic	Sample	Selection	for	Approximate	Query	
Processing,”	Proc.	ACM	SIGMOD	Int.	Conf.	Manag.	Data,	pp.	539–550,	2003.	

[5]	 S.	Chaudhuri,	G.	Das,	M.	Datar,	R.	Motwani,	and	V.	Narasayya,	“Overcoming	limitations	of	
sampling	for	aggregation	queries,”	Proc.	-	Int.	Conf.	Data	Eng.,	pp.	534–542,	2001.	

[6]	 L.	Sidirourgos,	M.	Kersten,	and	P.	Boncz,	“SciBORQ:	Scientific	data	management	with	
bounds	on	runtime	and	quality,”	CIDR	2011	-	5th	Bienn.	Conf.	Innov.	Data	Syst.	Res.	Conf.	
Proc.,	pp.	296–301,	2011.	

[7]	 B.	Gibbons,	M.	Avenue,	and	M.	H.	Nj,	“The	ALqua	Approximate,”	pp.	574–576.	
[8]	 Y.	Park,	B.	Mozafari,	J.	Sorenson,	and	J.	Wang,	“VerdictDB:	Universalizing	Approximate	

Query	Processing,”	2018.	

	

DELIVERABLE D2.2 40

[9]	 B.	Ding,	S.	Huang,	S.	Chaudhuri,	K.	Chakrabarti,	and	C.	Wang,	“Sample	+	Seek :	
Approximating	Aggregates	with	Distribution	Precision	Guarantee,”	Proc.	2016	Int.	Conf.	
Manag.	Data,	pp.	679–694,	2016.	

[10]	 J.	Peng,	D.	Zhang,	J.	Wang,	and	J.	Pei,	“AQP++:	Connecting	approximate	query	processing	
with	aggregate	precomputation	for	interactive	analytics,”	Proc.	ACM	SIGMOD	Int.	Conf.	
Manag.	Data,	pp.	1477–1492,	2018.	

[11]	 B.	Mozafari	et	al.,	“SnappyData :	A	Unified	Cluster	for	Streaming,	Transactions,	and	
Interactive	Analytics,”	Cidr,	pp.	1–8,	2017.	

[12]	 S.	Kandula	et	al.,	“Quickr:	Lazily	approximating	complex	AdHoc	queries	in	BigData	
clusters,”	Sigmod,	pp.	631–646,	2016.	

[13]	 A.	Galakatos,	A.	Crotty,	E.	Zgraggen,	C.	Binnig,	and	T.	Kraska,	“Revisiting	reuse	for	
approximate	query	processing,”	Proc.	VLDB	Endow.,	vol.	10,	no.	10,	pp.	1142–1153,	
2017.	

[14]	 J.	M.	Hellerstein,	P.	J.	Haas,	and	H.	J.	Wang,	“Online	Aggregation,”	SIGMOD	Rec.	(ACM	
Spec.	Interes.	Gr.	Manag.	Data),	vol.	26,	no.	2,	pp.	171–181,	1997.	

[15]	 K.	Zeng,	S.	Agarwal,	A.	Dave,	M.	Armbrust,	and	I.	Stoica,	“G-OLA:	Generalized	on-line	
aggregation	for	interactive	analysis	on	big	data,”	Proc.	ACM	SIGMOD	Int.	Conf.	Manag.	
Data,	vol.	2015-May,	pp.	913–918,	2015.	

[16]	 K.	Zeng,	S.	Gao,	B.	Mozafari,	and	C.	Zaniolo,	“The	Analytical	Bootstrap :	a	New	Method	for	
Fast	Error	Estimation	in	Approximate	Query	Processing,”	pp.	277–288.	

[17]	 K.	Zeng,	S.	Agarwal,	and	I.	Stoica,	“iOLAP:	Managing	Uncertainty	for	Efficient	
Incremental	OLAP,”	Proc.	SIGMOD,	pp.	1347–1361,	2016.	

[18]	 Z.	Liu	and	J.	Heer,	“The	effects	of	interactive	latency	on	exploratory	visual	analysis,”	
IEEE	Trans.	Vis.	Comput.	Graph.,	vol.	20,	no.	12,	pp.	2122–2131,	2014.	

[19]	 Y.	Wu,	L.	Xu,	R.	Chang,	J.	M.	Hellerstein,	and	E.	Wu,	“Making	Sense	of	Asynchrony	in	
Interactive	Data	Visualizations,”	vol.	14,	no.	8,	pp.	1–14,	2015.	

[20]	 A.	Kim,	E.	Blais,	P.	Indyk,	and	S.	Madden,	“Rapid	Sampling	for	Visualizations	with	
Ordering	Guarantees,”	pp.	521–532.	

[21]	 D.	Moritz,	D.	Fisher,	B.	Ding,	and	C.	Wang,	“Trust,	but	verify:	Optimistic	visualizations	of	
approximate	queries	for	exploring	big	data,”	in	Proceedings	of	the	2017	CHI	conference	
on	human	factors	in	computing	systems,	2017,	pp.	2904–2915.	

[22]	 S.	Rahman	et	al.,	“I’ve	seen"	enough"	incrementally	improving	visualizations	to	support	
rapid	decision	making,”	Proc.	VLDB	Endow.,	vol.	10,	no.	11,	pp.	1262–1273,	2017.	

[23]	 Y.	Wu,	B.	Harb,	J.	Yang,	and	C.	Yu,	“Efficient	evaluation	of	object-centric	exploration	
queries	for	visualization,”	Proc.	VLDB	Endow.,	vol.	8,	no.	12,	pp.	1752–1763,	2015.	

[24]	 R.	Borovica-Gajić,	R.	Appuswamy,	and	A.	Ailamaki,	“Cheap	data	analytics	using	cold	
storage	devices,”	Proc.	VLDB	Endow.,	vol.	9,	no.	12,	pp.	1029–1040,	2016.	

[25]	 G.	Cormode,	“Synopses	for	Massive	Data:	Samples,	Histograms,	Wavelets,	Sketches,”	
Found.	Trends	Databases,	vol.	4,	no.	1–3,	pp.	1–294,	2012.	

[26]	 B.	H.	Bloom,	“Space/time	trade-offs	in	hash	coding	with	allowable	errors,”	Commun.	
ACM,	vol.	13,	no.	7,	pp.	422–426,	1970.	

[27]	 M.	Zaharia,	M.	Chowdhury,	M.	J.	Franklin,	S.	Shenker,	and	I.	Stoica,	“Spark:	Cluster	
computing	with	working	sets.,”	HotCloud,	vol.	10,	no.	10–10,	p.	95,	2010.	

[28]	 M.	Zaharia	et	al.,	“Resilient	distributed	datasets:	A	fault-tolerant	abstraction	for	in-
memory	cluster	computing,”	in	Proceedings	of	the	9th	USENIX	conference	on	Networked	
Systems	Design	and	Implementation,	2012,	p.	2.	

[29]	 M.	Zaharia,	M.	Chowdhury,	M.	J.	Franklin,	S.	Shenker,	and	I.	S.	Spark,	“Cluster	computing	
with	working	sets,”	in	HotCloud’10	Proceedings	of	the	2nd	USENIX	conference	on	Hot	

	

DELIVERABLE D2.2 41

topics	in	cloud	computing,	2010,	p.	10.	
[30]	 M.	Olma,	O.	Papapetrou,	R.	Appuswamy,	and	A.	Ailamaki,	“Taster :	Self-Tuning	,	Elastic	

and	Online	Approximate	Query	Processing,”	2019	IEEE	35th	Int.	Conf.	Data	Eng.,	pp.	
482–493,	2019.	

[31]	 G.	Cormode,	S.	Muthukrishnan,	and	I.	Rozenbaum,	“Summarizing	and	mining	inverse	
distributions	on	data	streams	via	dynamic	inverse	sampling,”	in	Proceedings	of	the	31st	
international	conference	on	Very	large	data	bases,	2005,	pp.	25–36.	

[32]	 S.	L.	Lohr,	Sampling:	design	and	analysis.	Nelson	Education,	2009.	
[33]	 D.	C.	Montgomery	and	G.	C.	Runger,	Applied	statistics	and	probability	for	engineers.	John	

Wiley	and	Sons,	2014.	
[34]	 A.	Krause,	C.	Guestrin,	C.	Faloutsos,	and	J.	Vanbriesen,	“Cost-effective	Outbreak	

Detection	in	Networks,”	pp.	420–429,	2007.	
[35]	 J.	Goldstein	and	P.-åke	Larson,	“Optimizing	Queries	Using	Materialized	Views :	A	

Practical	,	Scalable	Solution,”	pp.	331–342,	2001.	
[36]	 L.	Ma,	D.	Van	Aken,	A.	Hefny,	G.	Mezerhane,	A.	Pavlo,	and	G.	J.	Gordon,	“Query-based	

workload	forecasting	for	self-driving	database	management	systems,”	Proc.	ACM	
SIGMOD	Int.	Conf.	Manag.	Data,	pp.	631–645,	2018.	

[37]	 A.	Ganapathi	et	al.,	“Predicting	multiple	metrics	for	queries:	Better	decisions	enabled	by	
machine	learning,”	Proc.	-	Int.	Conf.	Data	Eng.,	pp.	592–603,	2009.	

[38]	 R.	Marcus	and	O.	Papaemmanouil,	“Plan-structured	deep	neural	network	models	for	
query	performance	prediction,”	Proc.	VLDB	Endow.,	vol.	12,	no.	11,	pp.	1733–1746,	
2019.	

[39]	 Y.	Fang,	J.	Peng,	L.	Liu,	and	C.	Huang,	“WOVSQLI:	Detection	of	SQL	injection	behaviors	
using	word	vector	and	LSTM,”	ACM	Int.	Conf.	Proceeding	Ser.,	pp.	170–174,	2018.	

[40]	 A.	Kipf,	M.	Freitag,	D.	Vorona,	P.	Boncz,	T.	Neumann,	and	A.	Kemper,	“Estimating	
Filtered	Group-By	Queries	is	Hard:	Deep	Learning	to	the	Rescue,”	1st	Int.	Work.	Appl.	AI	
Database	Syst.	Appli-	cations,	2019.	

[41]	 R.	Marcus	and	O.	Papaemmanouil,	“Deep	reinforcement	learning	for	join	order	
enumeration,”	Proc.	1st	Int.	Work.	Exploit.	Artif.	Intell.	Tech.	Data	Manag.	aiDM	2018,	pp.	
0–3,	2018.	

[42]	 R.	Marcus	et	al.,	“Neo:	A	learned	query	optimizer,”	Proc.	VLDB	Endow.,	vol.	12,	no.	11,	pp.	
1705–1718,	2019.	

[43]	 R.	Hayek	and	O.	Shmueli,	“Improved	Cardinality	Estimation	by	Learning	Queries	
Containment	Rates,”	arXiv	Prepr.	arXiv1908.07723,	2019.	

[44]	 N.	Potti	and	J.	M.	Patel,	“DAQ:	A	new	paradigm	for	approximate	query	processing,”	Vldb,	
vol.	8,	no.	9,	pp.	898–909,	2015.	

	

